Stability and Flight Controls

Three Axes of Flight

- Longitudinal (green)
 - Nose to tail
- Lateral (blue)
 - Wing tip to Wing tip
- Vertical (red)
 - Top to bottom

Controls

The Flight Controls

Pitch

- Motion about the lateral axis
- Controlled by the elevator

Roll

- Motion about the longitudinal axis
- Controlled by the ailerons

Yaw

- Motion about the vertical axis
- Controlled by the rudder

Adverse Yaw

(or why we have a Rudder)

- Induced drag
 - increase in lift = increase in drag
- If we want to roll to left
 - Yoke turns to left
 - Left aileron goes up, right aileron goes down
 - Right wing develops more lift, therefore more drag
 - And Plane tries to yaw in opposite direction to roll

Static Stability

- Positive (stable)
 - Ball returns to starting position when disturbed
- Neutral
 - Ball remains in new position when disturbed
- Negative (unstable)
 - Ball moves away from starting position when disturbed

Static Stability (continued)

Positive Stability

Neutral Stability

Negative Stability

Dynamic Stability

- Positive
 - Oscillations decrease in amplitude with time
- Neutral
 - Oscillations are constant in amplitude with time
- Negative
 - Oscillations increase in amplitude with time
- Above are all types of Positive Static Stability
- Link to animation of dynamic longitudinal stability

Longitudinal Stability

- Stability about lateral axis
- AKA Pitch Stability
- Dependent on location of Center of Gravity
 - CG too far forward
 - Stable (too stable)
 - CG too far aft
 - Unstable
 - Stall Recovery Difficult
 - JAS 39 Gripen Crash 1
 - JAS 39 Gripen Crash 2

When the CG is ahead of NP the weight tends to correct the upset = Stable

When the CG is behind NP the weight worsens the uppset = Unstable

Lateral Stability

- Stability about longitudinal axis
- AKA Roll Stability
- Can be influenced by
 - Dihedral
 - Sweepback
 - High vs. Low Wing

High-wing placement is stabilizing laterally

Increasing Lateral Stability

Wing Placement

Dihedral

Directional Stability

- Stability about vertical axis
- Influenced by size and location of vertical stabilizer
 - Similar to weather vane or feathers on an arrow

Stall

- At certain angle of attack airflow cannot "stick" to top of wing
- Air flow separation occurs

Stall

- The "critical angle of attack" does not change for a given wing
- Large loss of lift when stalled
- Stall Video
- F-22 Stall Video

Spins

- Uncoordinated stalls result in spins
- Both wings are stalled, 1 wing "more" stalled than other
- Rotating helical downward path
- Easy to recover from in Cessna 172
- You won't have to do this during training
- Video 1
- Video 2
- Video 3

Aerodynamics of Maneuvering Flight

Climbing Flight

- Airplane climbs due to inclined thrust vector
- 4 Forces are still in equilibrium
- Rate at which airplane climbs determined by excess thrust

Left Turning Tendencies

- Torque
- P Factor
- Spiraling Slip Stream
- Gyroscopic Precession
 - This is not always a left turning tendency

Descending Flight

- Airplane descends when flight path is pointed downward
- 4 Forces are still in equilibrium

Turning Flight

- Horizontal component of lift turns plane
- Rudder is used to maintain coordination
- 4 forces are not in equilibrium, this is accelerated flight

Load Factor

- Ratio of weight supported by wings to weight of aircraft
- AKA as G's
- A load factor of 2, or 2
 G's means wings
 support twice aircraft
 weight
- Increasing load factor increases stall speed

$$n = \frac{LIFT}{WEIGHT}$$